2^p*2^p+1=16

Simple and best practice solution for 2^p*2^p+1=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2^p*2^p+1=16 equation:



2^p*2^p+1=16
We move all terms to the left:
2^p*2^p+1-(16)=0
We add all the numbers together, and all the variables
2^p*2^p-15=0
Wy multiply elements
4p^2-15=0
a = 4; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·4·(-15)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*4}=\frac{0-4\sqrt{15}}{8} =-\frac{4\sqrt{15}}{8} =-\frac{\sqrt{15}}{2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*4}=\frac{0+4\sqrt{15}}{8} =\frac{4\sqrt{15}}{8} =\frac{\sqrt{15}}{2} $

See similar equations:

| (x+16)+(5x+10)=56 | | 6x+6x+6x=108 | | 2(2x+3)=-6(x+9)* | | 5−6b=17−8 | | (X-4)(x-2)=14 | | 4x+2+5x-47+90=180 | | ∏3i=23(i+1) | | 67+47x=180 | | Y^2-17/4y+5/2=0 | | 2r+8.1=4.1r-10.38 | | 3m-7m=24 | | 5u^2+26u-24=6u-25 | | 1=(2a^2)^.5-a | | -6(v-1)=2(1-3v)-7 | | 2y-10=7y-15+5 | | -11r+5r=18 | | (11x-12)+(5x-48)=180 | | 3·(x–2/4)=-9 | | -9y^2-12y+10=5y^2+8y+20 | | 31=-7t-4 | | 15x+44=26x | | 2z^2+20z+2=0 | | x/4x4=-1 | | 3(c-14)=-36 | | 2(n+1)/5+3=7 | | 1/3b+8-0.5b=-4 | | n*n+1/5=2 | | Y=2x-7.Y+4x=30 | | n2+1/5=2 | | 5(2y–3)=30 | | z/8+8=-54 | | −7g=9 |

Equations solver categories